首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1666篇
  免费   44篇
  国内免费   83篇
化学   1139篇
晶体学   24篇
力学   47篇
数学   2篇
物理学   581篇
  2023年   102篇
  2022年   43篇
  2021年   44篇
  2020年   51篇
  2019年   34篇
  2018年   42篇
  2017年   52篇
  2016年   58篇
  2015年   54篇
  2014年   74篇
  2013年   91篇
  2012年   84篇
  2011年   152篇
  2010年   111篇
  2009年   211篇
  2008年   146篇
  2007年   127篇
  2006年   102篇
  2005年   53篇
  2004年   52篇
  2003年   30篇
  2002年   17篇
  2001年   13篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
排序方式: 共有1793条查询结果,搜索用时 187 毫秒
81.
This article provides an overview of a 2D agarose electrophoretic procedure for the characterization of semi-synthetic Haemophilus influenzae type b meningitis vaccines that were prepared for the immunization of small children. The analysis of such vaccines has been particularly challenging because the vaccine particles (i) are highly negatively charged, (ii) are as large as or even larger than intact viruses, and (iii) have a continuous (polydisperse) size distribution because of randomizing steps in the vaccine production (sonification and crosslinking). As a result of these characteristics, 1D electrophoresis of the vaccines produced smears without discernable peaks, but with a second dimension of separation a characteristic vaccine fingerprint was obtained. Whereas O’Farrell gels can accomplish a 2D separation according to size and charge for samples with protein-sized particles, nondenaturing 2D agarose electrophoresis achieves a similar result for much larger virus-sized particles. The separation principle, however, is different. Even though the 2D electrophoretic method was developed from 1983 to 1995, it remains a promising tool for vaccine quality control and for predicting vaccine effectiveness. Modern technology makes the analysis significantly more practical and affordable than it was more than 10 years ago, and the method is applicable to a variety of conjugated vaccines and complex mixtures of virus-sized particles.  相似文献   
82.
A series of highly water-soluble organo-silica nanoparticles, ranging from 2 to 10 nm in diameter, were synthesized by the cohydrolysis and copolycondensation reactions. ω-methoxy(polyethyleneoxy)propyltrimethoxysilane (PEG6-9) and hydroxymethyltriethoxysilane (HMTEOS) mixtures were catalyzed by sodium hydroxide in the presence of surfactant benzethonium chloride (BTC) with various ratios of PEG6-9/HMTEOS at room temperature. The synthesized organo-silica nanoparticles possess a core–shell structure with a core of organo-silica resulting from HMTEOS and a monolayer shell of PEG6-9. The chemo-physical characteristics of the particles were studied by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, 29Si nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The molecular weight and particle size of the particles increased with increasing HMTEOS molar ratios. The richest HMTEOS composition for the water-soluble particles was found to be HMTEOS:PEG6-9 = 80:20, where the particles had a 6 nm diameter core and a 0.8 nm thick shell. We propose that these water-soluble organo-silica nanoparticles will be suitable for biomedical applications.  相似文献   
83.
Doping induced magnetism in Co-ZnS nanoparticles   总被引:1,自引:0,他引:1  
Zn1−xCoxS nanoparticles with x=0, 0.1, 0.2, and 0.3 were synthesized by the co-precipitation method using thiophenol as capping agent. The effect of Co doping on the structural, optical and magnetic properties are investigated. The X-ray diffraction patterns show single phase with cubic structure and the images of Transmission Electron Microscopy indicate an average particle size of 39 nm. Significant blue shift in the optical absorbing band edge was observed with increasing Co doping. In the Co doped samples, room-temperature (RT) magnetic hysteresis is observed and the magnetization reduces with increasing Co content. However, these samples show paramagnetic resonance instead of ferromagnetic resonance at both 300 and 80 K, suggesting that the origin of RT magnetization in these Zn1−xCoxS nanoparticles involves with the frustration of antiferromagnetic interactions.  相似文献   
84.
T-piece and concentric counter-flow mixing systems are compared in continuous flow supercritical solvothermal synthesis of TiO2 at identical system parameters. The phase pure anatase nanoparticle products were characterized with powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), and the particle size, size distribution and absolute crystallinity mapped as a function of temperature, precursor concentration, flow rate and pressure for the two different continuous flow reactors. The particles synthesized with the T-piece geometry are smaller with a narrower size distribution, possibly indicating a more effective mixing, than particles synthesized at the same conditions with concentric counter-flow geometry. In general, an increased synthesis temperature leads to an increase in absolute crystallinity. For the particles synthesized with the concentric reactor geometry crossing of the critical point of the solvent causes a decrease in the particle size and size distribution, and conditions just above the critical temperature are demonstrated to be optimal for continuous solvothermal synthesis of anatase.  相似文献   
85.
There is a growing interest in the development of nanocomposites consisting of organic polymers and TiO2 or amorphous SiO2 nanoparticles. These nanoparticles may be released from nanocomposites. There is evidence that amorphous SiO2 and TiO2 nanoparticles can be hazardous. Thus, in the design of nanocomposites with such nanoparticles, hazard reduction extending to the full nanocomposite life cycle would seem a matter to consider. Options for hazard reduction include: changes of nanoparticle surface, structure or composition, better fixation of nanoparticles in nanocomposites, including persistent suppression of oxidative damage to polymers by nanoparticles, and design changes leading to the release of relatively large particles.  相似文献   
86.
Ag-doped polyaniline (PANI) nanoparticles are prepared via doping-dedoping-redoping with the thiol group in mercaptosuccinic acid (MSA) providing the linkage between PANI molecules and Ag atoms. Ag-MSA-doped PANI maintains the electrical conductivity well above the room-temperature value of 3.0 S/cm up to 220 °C, reaching its maximum (9.0 S/cm) at 180 °C. In addition, Ag-MSA-doped PANI nanoparticles show remarkable stability against repeated thermal aging at 120 °C. The room-temperature conductivity, in fact, increases by a factor of ∼3 after 3 cycles of thermal aging. The enhanced stability against repeated thermal aging is attributed to the formation of uniformly distributed Ag nanoparticles within the PANI particles upon heating.  相似文献   
87.
This article reviews progress in the application of electrophoretic techniques for the separation of nanoparticles. Numerous types of nanoparticles have recently been synthesised and integrated into different products and procedures. Consequently, analytical methods for the efficient characterisation of nanoparticles are now required. Several studies have revealed that gel electrophoresis can readily be used for separating nanoparticles according to their size or shape. However, many other studies focused on separation of nanoparticles by CE. In some cases nanoparticles could be separated by CZE, simply using pure buffer as the BGE. In other studies, buffer additives (most often SDS) were used, enabling fast separations of metallic nanoparticles by size. Other CE methods also allowed for separation of nanoparticle conjugates with biomolecules. Dielectrophoresis is yet another electrophoretic technique useful in separation and characterisation of nanoparticles; particularly nanotubes. Detection methods often used after electrophoretic separation include UV/Vis absorption and fluorescence spectroscopy. Examples of recent and relevant older reports are presented here. The authors conclude that electrophoretic methods for nanoanalysis can provide inexpensive and efficient tools for quality assurance and safety control; and as a consequence, they can augment transfer of nanotechnologies from research to industry.  相似文献   
88.
Silver nanoparticles (Ag-NPs) were synthesized using a facile green chemistry synthetic route. The reaction occurred at ambient temperature with four reducing agents introduced to obtain nanoscale Ag-NPs. The variables of the green synthetic route, such as acidity, concentration of starting materials, and molar ratio of reactants were optimized. Dispersing agents were employed to prevent Ag-NPs from aggregating. Advanced instrumentation techniques, such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible spectroscopy (UV–vis), and phase analysis light scattering technique (ZetaPALS) were applied to characterize the morphology, particle size distribution, elemental composition, and electrokinetic behavior of the Ag-NPs. UV–vis spectra detected the characteristic plasmon at approximately 395–410 nm; and XRD results were indicative of face-centered cubic phase structure of Ag. These particles were found to be monodispersed and highly crystalline, displaying near-spherical appearance, with average particle size of 10.2 nm using citrate or 13.7 nm using ascorbic acid as reductants from particle size analysis by ZetaPALS, respectively. The rapid electrokinetic behavior of the Ag was evaluated using zetapotential (from −40 to −42 mV), which was highly dependant on nanoparticle acidity and particle size. The current research opens a new avenue for the green fabrication of nanomaterials (including variables optimization and aggregation prevention), and functionalization in the field of nanocatalysis, disinfection, and electronics.  相似文献   
89.
The configuration of BSA macromolecules adsorbed on the surfaces of poly(alkylcyanoacrylate) nanoparticles has been determined using small angle neutron scattering (SANS). The nanoparticles were made by anionic emulsion polymerization (AEP) and self-assembly of dextran–poly(isobutylcyanoacrylate) (PICBA) copolymers. They have a hydrophobic PICBA core and a hydrophilic dextran corona. In vivo, they are recognized by the macrophages of the mononuclear phagocyte system. The amount of BSA bound to the particles, at adsorption equilibrium, has been determined through immunodiffusion, immunoelectrophoresis, and SANS. For particles with a radius of 25.3 nm, the adsorption was found to saturate at 64 adsorbed BSA molecules per particle. The configuration of the adsorbed BSA molecules was determined from the SANS scattering curves, first at full contrast, and then at contrast match. Both experiments indicate that the BSA molecules are adsorbed on the PICBA core, in a flat configuration. This result may be important for understanding the in vivo opsonization mechanisms of nanoparticles and their resulting biodistribution.  相似文献   
90.
The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The present study reports the synthesis of silver (Ag) nanoparticles from silver precursor using the bark extract and powder of novel Cinnamon zeylanicum. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles. TEM and XRD results confirmed the presence of nano-crystalline Ag particles. The pH played a major role in size control of the particles. Bark extract produced more Ag nanoparticles than the powder did, which was attributed to the large availability of the reducing agents in the extract. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The EC50 value of the synthesized nanoparticles against Escherichia coli BL-21 strain was 11 ± 1.72 mg/L. ThusC. zeylanicum bark extract and powder are a good bio-resource/biomaterial for the synthesis of Ag nanoparticles with antimicrobial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号